Structure and Mechanism of Formation of the Metallooxacyclobutane Complex $\operatorname{Pt}\left[\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{O}\right]\left[\operatorname{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$, the Product of the Reaction between Tetracyanooxirane and $\operatorname{Pt}\left[\operatorname{As}\left(\mathrm{C}_{8} \mathrm{H}_{5}\right)_{3}\right]_{4}$

R. Schlodder, ${ }^{1 \mathrm{a}}$ James A. Ibers,* ${ }^{1 \mathrm{a}}$ M. Lenarda, ${ }^{1 \mathrm{~b}}$ and M. Graziani ${ }^{1 \mathrm{~b}}$
Contribution from the Department of Chemistry, Northwestern University, Evanston, Illinois 60201, and the Istituto di Chimica Inorganica, Facoltà di Chimica Industriale, Università "Cà Foscari," Venice, Italy, Received May 20, 1974

Abstract

Metallooxacyclobutane complexes, $\mathrm{Pt}\left[\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{O}_{2} \mathrm{~L}_{2}\left(\mathrm{~L}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}, \mathrm{P}\left(p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}, \mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)\right.$, were prepared from the reaction between tetracyanooxirane ($2,2,3,3$-tetracyanooxacyclopropane, $\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{O}$) and PtL_{4}. The crystal and molecular structure of the complex where $\mathrm{L}=\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ has been determined from three-dimensional X-ray diffraction data. The crystal has symmetry consistent with the space group $P 2_{1} / c\left[C_{2 h}\right.$] with four molecules of the complex in a unit cell of dimensions $a=9.933$ (2) $\AA, b=20.477$ (3) $\AA, c=18.634$ (3) \AA, and $\beta=$ 95.42 (1) ${ }^{\circ}$. The structure was refined by least-squares techniques to a conventional R index of 0.039 based on 4819 reflections above background collected using a four-circle diffractometer. The structure determination shows that $\operatorname{Pt}\left[\mathrm{As}^{(}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$ has inserted into the carbon-oxygen bond of the oxirane. Such a metallooxacyclobutane ring has recently been suggested as an intermediate in the catalytic formation of ethylene carbonate from Ni^{0} complexes, ethylene oxide, and CO_{2}. Comparisons are made between the structural parameters of the present complex, the closely related metallocyclobutane complex $\operatorname{Pt}\left[C_{2}\left(\mathrm{CN}_{4}\right)_{4} \mathrm{CH}_{2}\right]\left[\mathrm{P}_{\mathrm{P}}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]$, and the small rings tetracyanooxirane and $1,1,2,2$-tetracyanocyclopropane. Spectroscopic data and chemical behavior of the metallooxacyclobutane complexes are reported.

Considerable interest has been shown in the reaction of transition metal compounds and systems containing cyclopropane rings. ${ }^{-5}$ Thus it has been demonstrated that a variety of transition metals promote ring opening and a skeletal rearrangement of highly strained ring systems such as bicyclo[1.1.0]butane, ${ }^{23.4}$ quadricyclene, ${ }^{3}$ semibullvalene, ${ }^{5}$ and many others. These reactions are often catalytic. ${ }^{28,3,4}$ A concerted pathway, ${ }^{4}$ interaction of appropriate d orbitals of the metal with the orbitals of the carbocycle, and oxidative addition, ${ }^{2,3.5}$ involving the initial rupture of only one carbon-carbon bond in the first step, have both been proposed for these reactions. Simple insertion reactions of transition metals into the carbon-carbon bond of substituted cyclopropanes and the isolation of the metallocyclobutane complexes, ${ }^{6-10}$ for some of which structural details are known, ${ }^{5,7,111.12}$ support the oxidative addition pathway. Nevertheless there is the question of whether the first step involves overlap of metal d orbitals and Walsh orbitals of the cyclopropane,

[^0]followed by ring opening, ${ }^{8,11}$ or if the reaction occurs by an attack of the metal at one carbon atom of the ring, ${ }^{10}$ followed by fission of a carbon-carbon bond, forming an ionic intermediate.

Recently we have reported the reaction ${ }^{10}$ of the electron deficient 1,1,2,2-tetracyanocyclopropane molecule with zerovalent platinum and palladium complexes and the structure of the metallocyclobutane complex $\mathrm{Pt}\left[\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{CH}_{2}\right]\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}{ }^{12}$ Below we describe the reaction of zerovalent platinum compounds of the type $\mathrm{PtL}_{4}\left[\mathrm{~L}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}, \mathrm{P}\left(p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}, \mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]$ and the electron deficient tetracyanooxirane molecule (2,2,3,3 -tetracyanooxacyclopropane). We report first the result of a structural investigation of the metallooxacyclobutane complex $\operatorname{Pt}\left[\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{O}\right]\left[\operatorname{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$.

Description and Discussion of the Structure

Figure 1 presents a drawing of the $\operatorname{Pt}\left[\mathrm{C}_{2}(\mathrm{CN})_{1} \mathrm{O}\right]$ $\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$ molecule (I) and indicates the numbering scheme. The vibrational thermal ellipsoids at their 50% probability level are also displayed in the figure and the root-mean-square amplitudes of vibration are presented in Table I. These vibrational data appear to be reasonable; as expected, the greatest thermal motion is shown by the cyano nitrogen atoms. From the positional parameters in Table II and the correlation matrix, the relevant interatomic distances, bond angles, and their standard deviations were calculated and are presented in Table III.

The crystal structure consists of individual monomeric molecules, each of which is one asymmetric unit. The stereo drawing of four complete molecules in a unit cell (Figure 2) represents a view along the x axis. All intermolecular contacts are normal, the shortest distance being an $\mathrm{H}(33) \cdots \mathrm{H}(33)$ interaction of $2.42 \AA$ in adjacent molecules. In the description of the present

Figure 1. A drawing of the $\mathrm{Pt}\left[\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{O}\right]\left[\mathrm{As}_{(}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$ molecule. Hydrogen atoms of the phenyl rings have been omitted. The 50% probability vibrational ellipsoids are shown.

Table I. Root-Mean-Square Amplitudes of Vibration (\AA)

Atom	Min	Intermed	Max
Pt	$0.1945(5)$	$0.2068(4)$	$0.2190(4)$
$\mathrm{As}(1)$	$0.207(1)$	$0.212(1)$	$0.228(1)$
$\mathrm{As}(2)$	$0.197(1)$	$0.223(1)$	$0.228(1)$
O	$0.195(7)$	$0.241(7)$	$0.333(7)$
$\mathrm{N}(1)$	$0.22(1)$	$0.32(1)$	$0.37(1)$
$\mathrm{N}(2)$	$0.24(1)$	$0.31(1)$	$0.44(1)$
$\mathrm{N}(3)$	$0.25(1)$	$0.31(1)$	$0.36(1)$
$\mathrm{N}(4)$	$0.22(1)$	$0.31(1)$	$0.36(1)$
$\mathrm{C}(1)$	$0.20(1)$	$0.21(1)$	$0.25(1)$
$\mathrm{C}(2)$	$0.21(1)$	$0.22(1)$	$0.25(1)$
$\mathrm{C}(3)$	$0.23(1)$	$0.25(1)$	$0.27(1)$
$\mathrm{C}(4)$	$0.22(1)$	$0.25(1)$	$0.33(1)$
$\mathrm{C}(5)$	$0.21(1)$	$0.26(1)$	$0.28(1)$
$\mathrm{C}(6)$	$0.23(1)$	$0.26(1)$	$0.27(1)$

structure we will compare structural details with those of the closely related complex $\mathrm{Pt}\left[\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{CH}_{2}\right]\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$ (II) ${ }^{12}$ and those of the parent rings $1,1,2,2$-tetracyanocyclopropane (III) ${ }^{13}$ and tetracyanooxirane (IV). ${ }^{14}$ These molecules and the atom nomenclature in I, II, III, and IV are illustrated in Figure 3. Table IV compares the geometries of these four molecules.

The most interesting feature of the present structure is that the platinum atom is inserted into the carbonoxygen bond of the three-membered heterocycle tetracyanooxirane. The inner coordination sphere of complex I is shown in Figure 4.

The platinum atom and the four equatorial atoms, $\mathrm{C}(1), \mathrm{O}, \mathrm{As}(1)$, and $\mathrm{As}(2)$, are essentially coplanar. The dihedral angle between the planes $\mathrm{C}(1)-\mathrm{Pt}-\mathrm{O}$ and $\mathrm{As}(1)-\mathrm{Pt}-\mathrm{As}(2)$ is 4.5 (2) ${ }^{\circ}$. The distortion from the square-planar arrangement is much greater in the related four-coordinated complex (II) and in $\mathrm{Pt}\left[(\mathrm{NC})_{2}-\right.$ $\mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2} .^{15} \quad$ The analogous dihedral angles are 18.0 (2) and 8.3°, respectively. As in the metallocyclobutane compounds, ${ }^{7,11,12}$ the present complex possesses a puckered four-membered ring. The degree of puckering is least in compound I. This may be an effect of the oxygen in the four-membered ring. For example the puckering in cyclobutane is much

[^1]higher than in oxetane, ${ }^{16}$ which is essentially planar. The present distortion from planarity can be simply understood in terms of minimization of the nonbonding interactions between the cyano groups attached to $\mathrm{C}(1)$ and $\mathrm{C}(2)$. An approximate measure for the twisting around the $\mathrm{C}(1)-\mathrm{C}(2)$ bond is the torsion angles for the carbon chains $\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ and $\mathrm{C}(5)-\mathrm{C}(1)-$ $\mathrm{C}(2)-\mathrm{C}(4)$ of -31.9 (9) and -17.7 (9) ${ }^{\circ}$, respectively. Table V lists calculated least-squares planes through various atoms of the inner coordination sphere and displacements of atoms from these planes. Dihedral angles, torsion angles, and vector-plane normal angles are presented in Table III.
The two independent platinum-arsine distances (2.341 (1) and $2.402(1) \AA$) are in the expected range and are near to the Pt-As bond lengths observed in other complexes, for example trans- $-\mathrm{PtCl}_{2}\left(\mathrm{As}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}$, $\mathrm{Pt}-\mathrm{As}=$ 2.308 (2) $\AA,{ }^{17} \mathrm{Pt}[o \text {-phenylenebis(dimethylarsine) }]_{2}{ }^{2+}$, Pt-As $=2.375(4) \AA \AA, 18$ and $\mathrm{Pt}\left(\mathrm{F}_{3} \mathrm{CC}_{2} \mathrm{CF}_{3}\right) \mathrm{Cl}\left(\mathrm{CH}_{3}\right)$ $\left[\mathrm{As}\left(\mathrm{CH}_{3}\right)_{)_{2}}\right.$, Pt-As $=2.434$ (4) $\AA .{ }^{19}$ The significantly longer Pt-As bond trans to the carbon atom $\mathrm{C}(1)$ reflects the stronger trans influence of carbon compared with oxygen. ${ }^{20}$ The platinum-carbon bond is 2.103 (7) \AA, slightly shorter than in complex II (2.138 (6) \AA) and the same as in the related complex $\operatorname{Pt}\left[(\mathrm{NC})_{2} \mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}\right]-$ $\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}^{15}\left(2.11\right.$ (3) \AA) or the $\mathrm{Pt}-\mathrm{sp}^{2} \mathrm{C}$ bond in the bis(acetylacetonato)chloroplatinate anion $\mathrm{PtOC}\left(\mathrm{CH}_{3}\right)$ $\overline{\mathrm{CHC}\left(\mathrm{CH}_{3}\right) \mathrm{O}}\left[\mathrm{CH}\left(\mathrm{COCH}_{3}\right)_{2}\right] \mathrm{Cl}$ of 2.106 (7) $\AA .{ }^{21}$ The platinum-oxygen bond (2.050 (5) \AA) is normal. In the complex $\operatorname{Pt}\left[\mathrm{CO}_{3}\right]\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2} \mathrm{Pt}-\mathrm{O}$ is $2.07 \AA ; 22$ in the dioxygen complex $\mathrm{Pt}\left(\mathrm{O}_{2}\right)\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$ it is 2.006 (7) $\AA .{ }^{23}$

The $\mathrm{O}-\mathrm{Pt}-\mathrm{As}(2)$ angle is 93.2 (2) ${ }^{\circ}$ compared with $102.8(2)^{\circ}$ for the $\mathrm{C}(1)-\mathrm{Pt}-\mathrm{As}(1)$ angle. In complex II the analogous angles $\mathrm{P}(1)-\mathrm{Pt}-\mathrm{C}(1)$ and $\mathrm{P}(2)-\mathrm{Pt}-\mathrm{C}(2)$ are, as expected, approximately the same (97.1 (2) and $99.8(2)^{\circ}$, respectively). We think this difference in the present complex may arise from the steric requirement of the bulky $\mathrm{C}(\mathrm{CN})_{2}$ group relative to oxygen. The same effect is seen in the complex $\mathrm{Pt}\left[\mathrm{Cl}_{2} \mathrm{C}_{2}(\mathrm{CN})_{2}\right]$ $\left[\mathrm{P}^{\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}{ }^{24} \text { The angles are } 103.1 \text { (7) }{ }^{\circ} \text { for } \mathrm{Cl}_{2} \mathrm{C}-\mathrm{Pt}-\mathrm{P}}\right.$ and $114.3(8)^{\circ}$ for (NC) $)_{2} \mathrm{C}-\mathrm{Pt}-\mathrm{P}$.

The $\mathrm{C}(1)-\mathrm{C}(2)$ bond length of 1.58 (1) \AA in I is appreciably greater than the analogous bond distance in tetracyanooxirane (1.496 (2) \AA) (Table IV). It is also longer than the $\mathrm{C}-\mathrm{C}$ distance in an open carbon chain between sp^{3} and sp^{2} carbon atoms where electron withdrawing groups are attached (1.521 (3) \AA in the anion $\left[(\mathrm{NC})_{2} \mathrm{C}_{2} \mathrm{C}-\mathrm{CH}_{2} \mathrm{CN}^{-25}\right.$ and 1.511 (12) \AA in the $(\mathrm{NC})_{2} \mathrm{C}-\mathrm{C}(\mathrm{CN})_{2} \mathrm{H}$ moiety of $\mathrm{Ir}\left((\mathrm{CN})_{2} \mathrm{CCH}(\mathrm{CN})_{2}\right)\left((\mathrm{CN})_{2}-\right.$ $\left.\mathrm{CC}(\mathrm{CN})_{2}\right)(\mathrm{CO})\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)_{2} .{ }^{26}$

[^2]

Figure 2. A stereoscopic drawing of four molecules of $\mathrm{P}_{2}\left[\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{O}\right]\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$ whose central metal atoms all lie within the same unit cell.

Table II. Positional, Thermal, and Group Parameters for $\mathrm{Pt}_{[}\left[\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{O}\right]\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$

Atom	x	y	z	$10^{4} \beta_{11}{ }^{\text {a }}$	$10^{4} \beta_{22}$	$10^{4} \beta_{33}$	$10^{4} \beta_{12}$	$10^{4} \beta_{13}$	$10^{4} \beta_{23}$
Pt	0.21870 (3) ${ }^{\text {b }}$	0.15904 (1)	-0.18291 (1)	86.4 (3)	20.02 (8)	24.8 (1)	-2.2 (1)	4.5 (1)	-2.46 (7)
As (1)	0.44121 (7)	0.16497 (4)	-0.21417 (4)	91.8 (8)	23.4 (2)	25.8 (2)	-1.7(3)	6.5 (3)	-1.5 (2)
As(2)	0.24724 (8)	0.23954 (4)	-0.08898 (4)	103.7 (9)	21.5 (2)	24.7 (2)	-0.2(3)	3.3 (4)	-2.8(2)
\bigcirc	0.0205 (5)	0.1420 (3)	-0.1664 (3)	89 (6)	36 (2)	50 (2)	-13(3)	20 (3)	-13(2)
$\mathrm{N}(1)$	-0.1510 (8)	0.0006 (4)	-0.1922 (5)	193 (13)	34 (3)	70 (4)	-19(5)	16 (6)	15 (3)
$\mathrm{N}(2)$	-0.1444 (10)	0.1668 (5)	-0.3288 (6)	170 (13)	60 (4)	78 (5)	25 (6)	7 (6)	33 (4)
$\mathrm{N}(3)$	0.1508 (9)	0.0857 (4)	-0.3851 (4)	248 (15)	48 (3)	36 (3)	-14 (5)	5 (5)	-3 (3)
$\mathrm{N}(4)$	0.2229 (8)	-0.0220 (4)	-0.1824 (5)	179 (12)	28 (2)	68 (4)	19 (4)	-7 (6)	8 (3)
C(1)	0.1357 (7)	0.0828 (3)	-0.2486 (4)	103 (9)	21 (2)	29 (2)	4 (3)	-3 (4)	-4 (2)
C(2)	-0.0068 (7)	0.1025 (3)	-0.2246 (4)	97 (9)	22 (2)	36 (3)	-1 (3)	4 (4)	1 (2)
C(3)	-0.0902 (8)	0.0446 (4)	-0.2071 (5)	126 (11)	27 (2)	41 (3)	-2 (4)	7 (5)	3 (2)
C(4)	-0.0854 (9)	0.1376 (4)	-0.2852 (5)	125 (11)	33 (3)	51 (4)	8 (4)	10 (5)	13 (3)
C(5)	0.1455 (9)	0.0839 (4)	-0.3240 (5)	141 (11)	29 (2)	33 (3)	-9 (4)	5 (5)	-6(2)
C(6)	0.1853 (9)	0.0226 (4)	-0.2129 (5)	135 (11)	25 (2)	41 (3)	1 (4)	5 (5)	-2 (2)
Group ${ }^{\text {c }}$	x_{c}	y_{c}		$z_{\text {c }}$	δ		ϵ		η
1	0.5185 (4)	0.0603 (2)		3399 (2)	-2.71	(5)	-2.396 (3)		-1.513 (5)
2	0.4990 (4)	0.3080 (2)		2901 (2)	-1.79	(3)	3.010 (3)		-2.678 (3)
3	0.6550 (4)	0.1226 (2)		. 0743 (2)	-0.85	(4)	2.795 (3)		0.883 (4)
4	0.1163 (4)	0.1721 (2)		. 0508 (2)	-2.88	(4)	2.766 (3)		1.028 (4)
5	0.0474 (4)	0.3671 (2)	-0	1218 (2)	2.34	(5)	2.418 (4)		-0.132 (5)
6	0.5519 (4)	0.2974 (2)	-0.	. 0359 (2)	-3.01	(5)	-2.261 (3)		2.867 (5)

${ }^{a}$ The form of the anisotropic thermal ellipsoid is $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right)\right]$. ${ }^{b}$ Numbers in parentheses given here and in other tables are estimated standard deviations in the least significant figures. ${ }^{c} x_{c}, y_{c}, z_{c}$ are the fractional coordinates of the ring center; δ, ϵ, and η (in radians) have been defined in R. Eisenberg and J. A. Ibers, Inorg. Chem., 4, 773 (1965). The groups 1-6 are phenyl rings.

(il)

(1)

(iv)

(110)

Figure 3. Numbering scheme in the four molecules $\operatorname{Pt}\left[\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{O}\right]-$ $\left[\mathrm{As}^{\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}(\mathrm{I}), \mathrm{Pt}\left[\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{CH}_{2}\right]\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2} \text { (II), tetracyanooxirane }{ }^{2} \text {. }}\right.$ (III), and 1,1,2,2-tetracyanocyclopropane (IV).

Such lengthening of the carbon-carbon bond is not surprising, as bond distances may be expected to increase with relief of strain within the three-membered ring. For example the carbon-carbon bond distances in oxetane ${ }^{16}$ and oxirane ${ }^{27}$ are 1.549 (3) and 1.472 (2) \AA, respectively, and a similar trend is shown in the bond
(27) G. L. Cunningham, A. W. Boyd, R, J. Myers, W. D. Gwinn, and W. J. LeVan, J. Chem. Phys., 19, 676 (1951).

Figure 4. The conformation of the metallooxacyclobutane ring in the molecule $\mathrm{Pt}\left[\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{O}\right]\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$.
lengths of 1,2,3,4-tetracyanocyclobutane ${ }^{28}$ and 1,2,3tricyanocyclopropane ${ }^{29}$ (1.561 (3) and 1.518 (3) \AA). The average value 1.565 (9) \AA of the C-C bond distance,
(28) B. Greenberg and B. Post, Acta Crystallogr., Sect, B, 24, 918 (1968).
(29) A. Hartman and F. L. Hirshfeld, Acta Crystallogr., 20, 80 (1966).

Table III. Distances (\AA) and Angles (deg)

Distances		Bond angles	
$\mathrm{Pt}-\mathrm{As}(1)$	2.341 (1)	$\mathrm{As}(1)-\mathrm{Pt}-\mathrm{As}(2)$	95.54 (3)
$\mathrm{Pt}-\mathrm{As}(2)$	2.402 (1)	$\mathrm{O}-\mathrm{Pt}-\mathrm{C}(1)$	68.4 (3)
$\mathrm{Pt}-\mathrm{C}(1)$	2.103 (7)	$\mathrm{O}-\mathrm{Pt}-\mathrm{As}(2)$	93.2 (2)
$\mathrm{Pt}-\mathrm{O}$	2.050 (5)	$\mathrm{C}(1)-\mathrm{Pt}-\mathrm{As}(1)$	102.8 (2)
$\mathrm{Pt} \cdots \mathrm{C}(2)$	2.576 (7)	$\mathrm{O}-\mathrm{Pt}-\mathrm{As}(1)$	171.2 (2)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.58 (1)	$\mathrm{C}(1)-\mathrm{Pt}-\mathrm{As}(2)$	161.1 (2)
O-C(2)	1.361 (9)	$\mathrm{C}(2)-\mathrm{O}-\mathrm{Pt}$	96.0 (4)
O...C(1)	2.335 (9)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Pt}$	87.7 (4)
$\mathrm{C}(1)-\mathrm{C}(5)$	1.42 (1)	$\mathrm{O}-\mathrm{C}(2)-\mathrm{C}(1)$	105.1 (5)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.46 (1) ${ }_{1} 47$ (4) ${ }^{\text {a }}$	$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(6)$	114.3 (7)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.50 (1) ${ }^{1.47(4)^{a}}$	$\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{C}(3)$	106.5 (6)
$\mathrm{C}(2)-\mathrm{C}(4)$	1.49 (1)	$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{Pt}$	120.4 (6)
$\mathrm{C}(3)-\mathrm{N}(1)$	1.13 (1)	$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	115.1 (6)
$\mathrm{C}(4)-\mathrm{N}(2)$	1.13 (1)	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{Pt}$	105.4 (5)
$\mathrm{C}(5)-\mathrm{N}(3)$	1.14 (1) ${ }^{1.13}$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	111.1 (7)
$\mathrm{C}(6)-\mathrm{N}(4)$	1.12 (1)	$\mathrm{O}-\mathrm{C}(2)-\mathrm{C}(4)$	111.5 (7)
$\mathrm{As}(1)-\mathrm{C}(11)$	1.922 (5)	$\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{C}(1)$	109.2 (7)
As(1)-C(21)	1.930 (5)	$\mathrm{O}-\mathrm{C}(2)-\mathrm{C}(3)$	111.7 (7)
As(1)-C(31)	1.923 (5)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	112.9 (6)
As(2)-C(41)	1.925 (5) ${ }^{1 .}$	$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	178.1 (9))
$\mathrm{As}(2)-\mathrm{C}(51)$	1.910 (5)	$\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(2)$	176.7 (12)
As(2)-C(61)	1.919 (4),	$\mathrm{N}(3)-\mathrm{C}(5)-\mathrm{C}(1)$	178.4 (10) ${ }^{177.4(10)}$
Dihedral angles ${ }^{\text {b }}$		$\mathrm{N}(4)-\mathrm{C}(6)-\mathrm{C}(1)$	176.5 (10))
		$\mathrm{C}(11)-\mathrm{As}(1)-\mathrm{C}(31)$	102.8 (2)
$\mathrm{As}(1)-\mathrm{Pt}-\mathrm{As}(2)\}$	-4.5 (2)	$\mathrm{C}(11)-\mathrm{As}(1)-\mathrm{C}(21)$	102.0 (2)
$\mathrm{C}(1)-\mathrm{Pt}-\mathrm{C}$		$\mathrm{C}(31)-\mathrm{As}(1)-\mathrm{C}(21)$ $\mathrm{C}(51)-\mathrm{As}(2)-\mathrm{C} 61)$	113.2 (2) 105.3 (41)
$\mathrm{O}-\mathrm{C}(2)-\mathrm{C}(1)$	-18.2 (7)	C(51)-As(2)-C(61)	103.9 (2) 103.9 (2)
$\underset{\mathrm{C}}{\mathrm{As}(1)-\mathrm{Pt}-\mathrm{As}(2)} \mathbf{}$ (2)-O	15.2 (6)	$\mathrm{C}(61)-\mathrm{As}(2)-\mathrm{C}(41)$	106.2 (2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}$		Vector-plane normal angles ${ }^{\text {b }}$	
Torsion angles ${ }^{\text {c }}$			
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-31.2 (9)	As(2)-Pt-As(1) $\}$	-89.0 (2)
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(4)$	-17.7 (9)	$\mathrm{Pt}-\mathrm{C}(2)$	
$\mathrm{Pt}-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}$	-14.8 (5)	$\mathrm{As}(2)-\mathrm{Pt}-\mathrm{As}(1)\}$	-93.0 (2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}-\mathrm{Pt}$	15.2 (5)	$\mathrm{Pt}-\mathrm{C}(1)$	
$\mathrm{C}(2)-\mathrm{O}-\mathrm{Pt}-\mathrm{C}(1)$	-11.8 (4)	$\mathrm{As}(2)-\mathrm{Pt}-\mathrm{As}(1)$	85.6 (2)
$\mathrm{O}-\mathrm{Pt}-\mathrm{C}(1)-\mathrm{C}(2)$	10.1 (4)		
Displacement of an atom from a plane		$\left.\mathrm{C}^{\mathrm{C}}(1)-\mathrm{C}(6)-\mathrm{C}(5)\right\} \equiv \beta$	46.3 (9)
$\mathrm{C}(1)$			37.0 (9)
$\begin{array}{ll}\mathrm{As}(1)-\mathrm{Pt}-\mathrm{As}(2) & -0.163 \text { (7) } \\ \mathrm{C}(2)\end{array}$		$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(3)$ \}	
$\begin{array}{ll}\mathrm{As}(1)-\mathrm{Pt}-\mathrm{As}(2) & 0.136 \text { (7) }\end{array}$			
$\begin{array}{ll}\mathrm{As}(1)-\mathrm{Pt}-\mathrm{As}(2) & -0.037(6) \\ \mathrm{C}(1)\end{array}$			
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(2)$	0.386 (8)		
$\mathrm{C}(2)$			
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(1)$	-0.505 (9)		
$\mathrm{C}(2)$ $\mathrm{C}(1)-\mathrm{O}-\mathrm{Pt}$			
$\mathrm{C}(1)-\mathrm{O}-\mathrm{Pt}$	0.276 (10)		

${ }^{a}$ These are average quantities. The estimated standard deviation in parentheses is the larger of an individual standard deviation or of the standard deviation of a single observation as calculated from the mean. ${ }^{b}$ The sense of these angles is defined in J. K. Stalick and J. A. Ibers, J. Amer. Chem. Soc., 92, 5333 (1970). © The sense of these angles is defined in W. R. Busing, K. O. Martin, and H. A. Levy, ORNL-TM-306, Oak Ridge National Laboratory, Oak Ridge, Tenn., March, 1964.
observed in the isoelectronic platinum complex II, does not differ from the $\mathrm{C}-\mathrm{C}$ bond length found here.

On the other hand, the $C(2)-O$ bond distance (1.361 (9) \AA) in I is significantly shorter than in tetracyanooxirane (mean value 1.424 (1) \AA). This change is in contrast to the effect of a normal ring expansion. As for the carbon-carbon bonds, the carbon-oxygen bond length usually increases slightly with relief of ring strain. For example the $\mathrm{C}-\mathrm{O}$ bond distance in oxirane ${ }^{27}$ is 1.436 (2) \AA and in oxetane ${ }^{16} 1.449$ (2) \AA. Values of the $\mathrm{C}-\mathrm{O}$ bond length similar to that found here are observed in the aromatic systems 3,4-furandicarboxylic acid (1.356 (3) $\AA)^{30}$ and salicylic acid ${ }^{31}$ (distance
(30) D. E. Williams and R. E. Rundle, J. Amer. Chem. Soc., 86, 1660 (1964).
(31) W. Cochran, Acta Crystallogr., 6, 260 (1953).
between the ring carbon and the hydroxyl group 1.361
(5) \AA) and also in the platinum complex $\stackrel{\mathrm{PtOOC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}-}{ }$ $\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}(\mathrm{C}-\mathrm{O} 1.32$ (4) and $1.40(4) \AA) .{ }^{32}$

The exocyclic $\mathrm{C}-\mathrm{C}$ and $\mathrm{C} \equiv \mathrm{N}$ bonds are normal, the average bond distances being 1.47 (4) and 1.13 (1) \AA, respectively. The average $\mathrm{C}-\mathrm{C} \equiv \mathrm{N}$ bond angle of $177.4(10)^{\circ}$ is not significantly different from 180°.

The exocyclic $\mathrm{NC}-\mathrm{C}-\mathrm{CN}$ bond angles of 114.3 (7) ${ }^{\circ}$ (around $C(1)$) and $106.5(6)^{\circ}$ (around $C(2)$) are significantly different. The analogous bond angles in tetracyanooxirane are 116.9 (2) and 117.2 (2) ${ }^{\circ}$ and suggest sp^{2} hybridization at both ring carbon atoms, in ac-
(32) R. Ugo, F. Conti, S. Cenini, R, Mason, and G. B. Robertson, Chem. Commun., 1498 (1968).

Table IV. Comparison of Intramolecular Distances and Bond Angles

${ }^{a}$ See Figure 3 for the numbering scheme. ${ }^{b}$ These are average quantities. See footnote a in Table III. ${ }^{c}$ With reference to I and II shown in Figure 3, α is the angle at Pt and the other angles proceed clockwise in the order δ, β, and γ.

Table V. Weighted Least-Squares Planes

${ }^{a}$ If the deviation of an atom from the plane is not assigned a standard deviation, the atom was not used in the calculation of the plane.
cordance with the Walsh ${ }^{33}$ bonding scheme for cyclopropane rings. The significant decrease of the exocyclic bond angle around $\mathrm{C}(2)$ indicates a strong increase in p-orbital contribution to the hybrid orbitals interacting with the adjacent cyano carbon atoms. A similar trend in the exocyclic bond angles may be observed in the molecules oxirane and oxetane. The former compound possesses a $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angle of $116.7^{\circ},{ }^{27}$ while the average exocyclic bond angle in oxetane is $110.5(2)^{\circ} .{ }^{16}$ The exocyclic NC-C-CN bond angle around the carbon $\mathrm{C}(1)$ has not changed upon metalation. The average value of the comparable exocyclic $\mathrm{NC}-\mathrm{C}-\mathrm{CN}$ bond angles of the platinum complex II is $111.4(6)^{\circ}$. The remarkably different hybridization of both ring carbon atoms is also shown by their displacement out of the plane formed by $C(3), C(4), C(1)$ for $C(2)$ and by $C(6)$, $\mathrm{C}(5), \mathrm{C}(2)$ for $\mathrm{C}(1)$. The distance from the plane is 0.505 (9) for C(2) and 0.386 (8) \AA for $\mathrm{C}(1)$. The last value, which would be zero for an $\mathrm{sp}^{2} \mathrm{C}$ atom, reflects also the bending back from the metal of the two cyanide groups attached to $\mathrm{C}(1)$. This effect may be steric, as well as electronic. The angle β, which has been used to describe the nonplanarity of coordinated olefins, is 46.3 (9) $)^{\circ} .{ }^{24}$ In the related complex $\operatorname{Pt}\left[(\mathrm{NC})_{2} \mathrm{C}=\mathrm{C}\right.$ $\left.\left(\mathrm{CN}_{2}\right)\right]\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}, \beta$ is $56.6^{\circ}{ }^{15.24}$
(33) A. D. Walsh, Trans. Faraday Soc., 45, 179 (1949).

Reactions and Discussion

Some new platinum complexes of the type $\mathrm{Pt}\left[\mathrm{C}_{2}\right.$ $(\mathrm{CN})_{4} \mathrm{O} \mathrm{LL}_{2}\left(\mathrm{~L}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}, \mathrm{P}\left(p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}, \mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)$ have been synthesized under very mild conditions by the reaction represented in eq 1 . Originally these

[A]
complexes were formulated as the insertion product of PtL_{2} into the $\mathrm{C}-\mathrm{C}$ bond of the three-membered tetracyanooxirane ring ${ }^{9,34}$ by analogy with the reaction of PtL_{4} and 1,1,2,2-tetracyanocyclopropane. ${ }^{10.12}$ Ir data of the new complexes are presented in Table VI. The

Table VI. Infrared Spectra (in cm^{-1})

Compounds	$\nu_{\mathrm{cN}}{ }^{a}$	$\nu_{\mathrm{C}-0^{b}}$
$\mathrm{Pt}\left[\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{O}\right]\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}(\mathrm{I})$	2220 m	$(1070)^{c}$
$\mathrm{Pt}\left[\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{O}\right]\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}(\mathrm{~V})$	2220 m	1070 m
$\mathrm{Pt}\left[\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{O}\right]\left[\mathrm{P}\left(p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}\right]_{2}(\mathrm{VI})$	2220 m	1075 m

${ }^{a}$ Measured in Nujol or CHCl_{3} solution. ${ }^{b}$ Nujol mull. ${ }^{\text {c }}$ At the same frequency a band attributable to $\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ is present.
sharp single $\nu(\mathrm{CN})$ stretching frequency at $2220 \mathrm{~cm}^{-1}$ is independent of the ligand L . The medium absorption band at $1070 \mathrm{~cm}^{-1}$, originally attributed to $v(\mathrm{C}-\mathrm{O}-\mathrm{C}),{ }^{9}$ can also be assigned to a metal-oxygen-carbon linkage in an alkoxy type complex. ${ }^{35}$ The present example shows once more how difficult it may be to determine the structure of a new compound only on the basis of non-

[^3]characteristic ir absorption bands. By the exchange reaction presented in eq 2 , the same product is obtained
$\mathrm{Pt}\left(\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{O}\right)\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2} \xrightarrow[-2 \mathrm{As}_{8}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}]{+2 \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}}$
$\mathrm{Pt}\left(\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{O}\right)\left[\mathrm{P}_{\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}}\right.$
as by reaction $1\left(\mathrm{~L}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)$. Under the mild reaction conditions a rearrangement of the metallooxacyclobutane ring is very unlikely, so that the same structure for all tetracyanooxirane adducts is most probable.

Recently metallooxacyclobutane complexes have been proposed as intermediates in the catalytic formation of ethylene carbonate in the system Ni^{0}, ethylene oxide, and $\mathrm{CO}_{2} \cdot{ }^{36}$ The present compound shows no reactivity with CO or CO_{2} at room temperature.

As for the reaction mechanism, the present complex is best described as an oxidative addition product from the intermediate species PtL_{2} and tetracyanooxirane. PtL_{2} acts as a nucleophile, attacking the oxirane ring at the center of lowest electron density. The presence of a positive charge on the two ring carbon atoms has been proposed on the basis of ESCA measurements and theoretical calculations. ${ }^{37}$ The attack may lead to cleavage of the weakest bond in the strained ring, here the $\mathrm{C}-\mathrm{O}$ bond, and an intermediate (A) (reaction 1) may be formed. This mechanism is supported by the observation that attack of a simple nucleophile such as I^{-}or pyridine also promotes cleavage of the $\mathrm{C}-\mathrm{O}$ bond in tetracyanooxirane. ${ }^{38}$ In contrast, olefins form substituted furans in a concerted reaction. ${ }^{39}$ Kinetics from this thermal reaction ${ }^{39}$ and theoretical considerations ${ }^{40}$ indicate that in solution tetracyanooxirane is in equilibrium with an activated species, probably a 1,3 -dipole or a resonating π-biradical $\left[(\mathrm{NC})_{2} \mathrm{C}^{*}-\mathrm{O}-\mathrm{C}^{*}(\mathrm{CN})_{2}\right]$. It seems that Pt_{2} cannot react in a concerted manner or at least that a nucleophilic attack is the preferred pathway. On the other hand the reaction of $1,1,2,2-$ tetracyanocyclopropane and PtL_{4} leads to fission of the $(\mathrm{NC})_{2} \mathrm{C}-\mathrm{C}(\mathrm{CN})_{2}$ bond. Comparison of the analogous $\mathrm{C}-\mathrm{C}$ bonds in tetracyanooxirane and 1,1,2,2-tetracyanocyclopropane shows that the substitution of the CH_{2} group in the cyclopropane for the isoelectronic oxygen atom in the oxirane strengthens the $\mathrm{C}-\mathrm{C}$ bond opposite to the oxygen atom. A similar trend is observed in the molecules cyclopropane $(\mathrm{C}-\mathrm{C}=1.510 \text { (2) } \AA)^{41}$ and oxirane $(C-C=1.472$ (2) $\AA) .{ }^{27}$ This effect of the electronegative oxygen has been explained by MO calculations using Walsh orbitals of the cyclopropane. ${ }^{42}$

Note that potassium cyanide does not liberate tetracyanooxirane from the complex. Such a liberation reaction is observed for alkyl- or aryl-substituted metallocyclobutane compounds, such as $\mathrm{Pt}\left[\mathrm{C}_{3} \mathrm{H}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]$ $\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}{ }^{8}$ In the present complexes attack of KCN leads to ring opening at $\mathrm{Pt}-\mathrm{O}$ to form the anion [Pt -$\left.(\mathrm{CN})\left[\mathrm{C}(\mathrm{CN})_{2}-\mathrm{C}(\mathrm{CN})_{2}-\mathrm{O}\right]\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{\dot{5}}\right)_{3}\right]_{2}\right]^{-}$.

[^4]The bonding in the metallooxacyclobutane ring can best be understood in terms of four two-center, twoelectron σ-bonds. The σ-bonds between platinumcarbon and platinum-oxygen may be formed by overlap of the 2 p orbitals with more or less s-orbital contribution of the light atoms and metal orbitals of the correct symmetry. Such a model explains easily all the observed structural details of the present complex I and also of the tetracyanocyclopropane complex II.

Experimental_Section

Collection and Reduction of X-Ray Data. The metallooxacyclobutane complex (I) was prepared by the method outlined below and recrystallized from dichloromethane-pentane. The air-stable crystals were colorless, transparent, octagonal needles with wellformed faces. Weissenberg and precession photographs taken with $\mathrm{Cu} \mathrm{K} \bar{\alpha}$ radiation indicated that the crystals belong to the monoclinic system. The systematic absence of $0 k 0$ reflections when $k \neq 2 n$ and $h 0 l$ reflections when $l \neq 2 n$ is consistent with the space group $C_{2 h}{ }^{5}-P 2_{1} / c$. A crystal of approximate dimensions $0.25 \times 0.35 \times 0.7 \mathrm{~mm}$, mounted with the needle axis [100] approximately along the spindle axis, was transferred to a Picker FACS-I automatic diffractometer. The lattice parameters were obtained as previously described ${ }^{43}$ by hand centering of 14 reflections with Mo $K \alpha_{1}$ radiation ($\lambda 0.70930 \AA$) in the range $28^{\circ} \leq 2 \theta \leq 34^{\circ}$. The cell constants at 22° are $a=9.933$ (2) $\AA, b=20.477$ (3) $\AA, c=$ 18.634 (3) \AA, and $\beta=95.42(1)^{\circ}$. The calculated density, based on four molecules per unit cell, is $1.675 \mathrm{~g} / \mathrm{cm}^{3}$ and agrees well with an observed value of 1.67 (2) $\mathrm{g} / \mathrm{cm}^{3}$, as measured by flotation in $\mathrm{CCl}_{4}-$ $\mathrm{BrF}_{2} \mathrm{CCF}_{2} \mathrm{Br}$. Data were collected in shells of 2θ by the $\theta-2 \theta$ scan method using monochromatic Mo $\mathrm{K} \alpha$ radiation produced by Bragg reflection from the (002) plane of a highly oriented graphite crystal. The scan range in 2θ was from -1.0° below the $\mathrm{K} \alpha_{1}$ peak to $+1.0^{\circ}$ above the $\mathrm{K} \alpha_{2}$ peak. The takeoff angle was 2.4° and a receiving aperture 4.5 mm high and 3.5 mm wide was positioned 32 cm from the crystal. Initially background counts of 10 sec were taken at the end of each scan range. Beyond 2θ of 33° this was increased to 20 sec . A scan rate of 2° in $2 \theta / \mathrm{min}$ was used.

Data were collected in the range $2.5<2 \theta \leq 49^{\circ}$. During the course of data collection six standard reflections from diverse regions of reciprocal space were measured every 100 reflections. At the end of the data collection, the intensities of all six standard reflections had, on the average, decreased by about 5%. Compensation for this decay was made during the data processing. During the course of data collection the crystal yellowed. The data were processed as previously described ${ }^{43.44}$ using a value of 0.04 for p. Of the 6920 reflections measured, 5125 obey the condition $F_{0}{ }^{2}>$ $3 \sigma\left(F_{0}{ }^{2}\right)$ and of these 4819 are unique and were used in subsequent refinements.

Solution and Refinement of the Structure. A sharpened, originremoved Patterson map was calculated ${ }^{45}$ and interpreted to give the coordinates of the platinum and the two arsenic atoms. The remaining nonhydrogen atoms were readily located by the usual combination of Fourier and least-squares techniques. Throughout the refinement the function minimized was $\Sigma w\left(\left|F_{0}\right|-\mid F_{0}\right)^{2}$, where ${ }_{1} F_{\mathrm{o}} \mid$ and $\left|F_{\mathrm{c}}\right|$ are the observed and calculated structure amplitudes, respectively, and where the weight, w, is $4 F_{0}{ }^{2} / \sigma^{2}\left(F_{0}{ }^{2}\right)$. The agreement indices R_{1} and R_{2} are defined as

$$
R_{1}=\sum i^{1} F_{o}\left|-\left|F_{\mathrm{e}}\right| / \sum\right| F_{\mathrm{o}} \mid
$$

and

$$
R_{2}=\left[\sum w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{o}}\right|\right)^{2} / \sum w F_{0}^{2}\right]^{2} ;
$$

The atomic scattering factors for all nonhydrogen atoms were taken from the usual tabulation, ${ }^{46}$ while those for H were from the

[^5]Table VII. Derived Parameters for Ring Atoms

Ring atom ${ }^{a}$					x	-Hyd y	z	B, \AA°
11	0.4866 (6) ${ }^{\text {b }}$	0.1040 (2)	-0.2865 (3)	4.0 (1)				
12	0.4655 (6)	0.1217 (2)	-0.3591 (3)	5.6 (2)	0.429 ${ }^{\text {c }}$	0.163	-0.372	6.5
13	0.4975 (7)	0.0780 (3)	-0.4125 (2)	6.6 (2)	0.483	0.090	-0.462	7.7
14	0.5505 (7)	0.0166 (3)	-0.3933 (3)	7.6 (3)	0.572	-0.013	-0.430	8.5
15	0.5715 (7)	-0.0011 (2)	-0.3207 (4)	8.7 (3)	0.608	-0.043	-0.308	9.4
16	0.5396 (6)	0.0426 (3)	-0.2673 (3)	6.3 (2)	0.554	0.031	-0.218	7.1
21	0.4785 (5)	0.2477 (2)	-0.2579 (3)	4.1 (1)				
22	0.3706 (4)	0.2911 (3)	-0.2714 (3)	4.9 (2)	0.283	0.280	-0.259	5.6
23	0.3911 (5)	0.3515 (2)	-0.3036 (3)	5.9 (2)	0.318	0.381	-0.313	6.7
24	0.5200 (6)	0.3684 (2)	-0.3223 (3)	6.0 (2)	0.533	0.409	-0.344	7.1
25	0.6274 (5)	0.3249 (3)	-0.3088 (3)	6.7 (2)	0.715	0.336	-0.322	7.6
26	0.6069 (4)	0.2646 (3)	-0.2766 (3)	5.7 (2)	0.680	0.235	-0.267	6.8
31	0.5681 (5)	0.1435 (2)	-0.1332 (2)	4.2 (1)				
32	0.5247 (4)	0.0966 (3)	-0.0861 (3)	5.2 (2)	0.436	0.079	-0.094	5.8
33	0.6116 (6)	0.0757 (3)	-0.0272 (3)	6.8 (2)	0.582	0.044	0.005	7.7
34	0.7418 (6)	0.1017 (3)	-0.0155 (3)	6.8 (2)	0.801	0.088	0.025	7.6
35	0.7852 (4)	0.1487 (3)	-0.0626 (3)	6.6 (2)	0.874	0.166	-0.055	7.2
36	0.6984 (5)	0.1695 (2)	-0.1215 (3)	5.2 (2)	0.728	0.201	-0.153	5.8
41	0.1756 (5)	0.2018 (2)	-0.0060 (2)	4.0 (1)				
42	0.1171 (6)	0.2401 (2)	0.0448 (3)	5.9 (2)	0.118	0.286	0.041	6.6
43	0.0578 (6)	0.2104 (3)	0.1015 (3)	7.2 (2)	0.018	0.236	0.136	8.0
44	0.0570 (6)	0.1424 (3)	0.1075 (3)	6.8 (2)	0.017	0.122	0.146	7.5
45	0.1156 (6)	0.1041 (2)	0.0568 (3)	6.5 (2)	0.115	0.058	0.061	7.3
46	0.1749 (6)	0.1338 (2)	0.0000 (3)	5.2 (2)	0.215	0.108	-0.034	5.9
51	0.1370 (5)	0.3148 (2)	-0.1100 (3)	4.3 (1)				
52	0.1575 (5)	0.3721 (3)	-0.0696 (3)	6.1 (2)	0.232	0.375	-0.034	7.3
53	0.0679 (7)	0.4244 (2)	-0.0815 (4)	7.7 (3)	0.082	0.463	-0.054	8.7
54	-0.0422 (6)	0.4194 (3)	-0.1338 (4)	8.0 (3)	-0.103	0.455	-0.142	8.9
55	-0.0627 (5)	0.3622 (3)	-0.1741 (3)	7.9 (3)	-0.138	0.359	-0.210	8.9
56	0.0269 (6)	0.3099 (3)	-0.1622 (3)	5.9 (2)	0.013	0.271	-0.190	6.7
61	0.4206 (4)	0.2751 (2)	-0.0555 (3)	4.2 (1)				
62	0.4766 (5)	0.3236 (2)	-0.0962 (2)	4.8 (2)	0.425	0.341	-0.137	5.4
63	0.6078 (5)	0.3459 (2)	-0.0767 (3)	5.9 (2)	0.646	0.379	-0.104	6.8
64	0.6831 (4)	0.3197 (3)	-0.0164 (3)	6.7 (2)	0.772	0.335	-0.003	7.7
65	0.6272 (5)	0.2712 (3)	0.0244 (3)	6.0 (2)	0.678	0.253	0.065	6.9
66	0.4960 (5)	0.2490 (2)	0.0048 (3)	4.9 (2)	0.458	0.216	0.033	5.7

${ }^{\circ}$ Ring atoms are numbered sequentially with 11,21 , and 31 attached to $\operatorname{As}(1)$ and 41,51 , and 61 attached to $\operatorname{As}(2)$. ${ }^{b}$ The estimated standard deviations are derived from those of the group parameters. ${ }^{c}$ The hydrogen atom 12 is attached to carbon atom 12 , hydrogen 13 is attached to carbon 13 , etc.
calculation of Stewart, et al. ${ }^{47}$ The effects of anomalous dispersion were included in $F_{\mathrm{c} .}{ }^{48}$ The trial structure was refined by a leastsquares procedure in which the phenyl rings were constrained to $D_{6 t}$ symmetry and treated as rigid groups ($\mathrm{C}-\mathrm{C}=1.390 \AA$) with overall group thermal parameters. The initial isotropic refinement, based on the inner 2527 data, led to a value of R_{1} of 0.060 . An absorption correction was now made. The 11 crystal faces were $\{010\},\{001\},\{011\}$ and ($1 \overline{1} 0$), (110), ($\overline{1} 00$). Based on a calculated linear absorption coefficient of $55.29 \mathrm{~cm}^{-1}$, the transmission factors were found to vary between 0.156 and 0.264 . An ensuing cycle of refinement in which all nongroup atoms were allowed to vibrate anisotropically and all group atoms were assigned individual isotropic thermal parameters converged to a value of R_{1} of 0.042 for the 4819 observations. The positions of the 30 phenyl hydrogen atoms were idealized ($\mathrm{C}-\mathrm{H}=0.95 \AA$), and each was assigned an isotropic thermal parameter $1 \AA^{2}$ larger than that of the carbon atom to which it is attached. The contributions of the hydrogen atoms were included in subsequent structure factor calculations. One further cycle of anisotropic refinement reduced the values of R_{1} and R_{2} to 0.039 and 0.047 , respectively, for the 4817 observations and 200 variables. In the final cycle an isotropic correction for secondary extinction was made. ${ }^{48}$ The extinction parameter converged to the value 2.2 (3) $\times 10^{-7} \mathrm{e}^{-2}$. The final atomic parameters and their standard deviations, as estimated from the inverse matrix, are listed in Table II. The derived positions for the ring carbon atoms as well as the idealized positions of the phenyl hydrogen atoms are given in Table VII.
An analysis of $\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{o}}\right|\right)^{2}$ as a function of $\left|F_{\mathrm{o}}\right|$, setting angles, and Miller indices indicated no unusual trends. The error

[^6]in an observation of unit weight is 1.61 e . The maximum density on a final difference Fourier map is 1.1 (1) e / \AA^{3}, approximately 25% of the height of a carbon atom in this structure. The final values of the structure amplitudes are tabulated as $10\left|F_{0}\right|$ and $10\left|F_{\mathrm{c}}\right|$ (in electrons) for those reflections used in the refinement. ${ }^{50}$

Preparations. The complexes $\operatorname{Pt}\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{4},{ }^{51} \mathrm{Pt}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{4},{ }^{52}$ and $\operatorname{Pt}\left[\mathrm{P}\left(p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}\right]_{5}^{53}$ were prepared by methods previously described, as was tetracyanooxirane. ${ }^{38}$ Infrared spectra were recorded on a Perkin-Elmer Model 457. Molecular weight determinations in CHCl_{3} were carried out using a Mechrolab HP-302B. Microanalyses were performed by Dornis and Kolbe, Mülheim, Germany.

Reactions of PtL_{4} Complexes with Tetracyanooxirane. $\mathrm{Pt}\left[\mathrm{C}_{2}-\right.$ $\left.(\mathrm{CN})_{4} \mathrm{O}\right]\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}(\mathrm{I}) . \quad \mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{O}(0.43 \mathrm{~g}, 3 \mathrm{mmol})$ was dissolved in 100 ml of anhydrous benzene, and to this solution was added $4.25 \mathrm{~g}(3 \mathrm{mmol})$ of $\left[\mathrm{Pt}\left(\mathrm{As}_{\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)_{4}\right] \text {, dissolved in a minimum }}\right.\right.$ amount of the same solvent. The resulting solution was stirred under nitrogen, and after 20 min the solvent was evaporated, at reduced pressure, to a small volume and the white air-stable product $\mathrm{Pt}\left(\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{O}\right)\left[\mathrm{As}^{\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2} \text { began to precipitate. The precipitation }}\right.$ was completed by addition of $\mathrm{CH}_{3} \mathrm{OH}$. The complex was filtered off, washed with methanol and ethyl ether, dried in vacuo, and recrystallized from $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}$: dec pt $190-193^{\circ}$; yield 49%; mol wt calcd 951, found 930 . Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{30} \mathrm{As}_{2} \mathrm{~N}_{4} \mathrm{OPt}$: C, $52.95 ; \mathrm{H}, 3.15 ; \mathrm{N}, 5.88$. Found: C, $52.8 ; \mathrm{H}, 3.2 ; \mathrm{N}, 5.7$.
${\mathrm{Pt}\left[\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{O}\right]\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2} \quad \text { (V). The same procedure using }}^{2}$ $\mathrm{Pt}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{4}$ gave the white air-stable product in 50% yield: dec pt

[^7]$210-215^{\circ}$; mol wt calcd 864, found 796. Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{30}$ $\mathrm{N}_{4} \mathrm{P}_{2} \mathrm{OPt}$: C, $58.29 ; \mathrm{H}, 3.50 ; \mathrm{N}, 6.49$. Found: C, $58.3 ; \mathrm{H}$, 3.5; N, 6.5.
$\operatorname{Pt}\left[\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{O}\right]\left[\mathrm{P}\left(p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}\right]_{2}(\mathrm{VI})$. This complex was obtained similarly as a white solid using $\mathrm{Pt}\left[\mathrm{P}\left(p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}\right]_{3}$ as the parent compound: yield 30%; dec pt 207-213 ${ }^{\circ}$; mol wt calcd 948 . Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{OPt}$: C, $60.82 ; \mathrm{H}, 4.43 ; \mathrm{N}, 5.91$. Found: C, 60.6; H, 4.4; N, 5.9.
Reactivity. Carbon Monoxide. The complex $\mathrm{Pt}\left[\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{O}\right]-$ $\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{\mathrm{i}}\right)_{3}\right]_{2}(\mathrm{~V})(0.864 \mathrm{~g}, 1 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was stirred in a CO atmosphere for 4 hr . The solvent was evaporated to a small volume; after addition of $\mathrm{CH}_{3} \mathrm{OH}$ only starting material was recovered.

Carbon Dioxide. The complex $\mathrm{Pt}^{2}\left[\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{O}\right]\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$ (I) ($0.095 \mathrm{~g}, 0.1 \mathrm{mmol}$) was dissolved in CHCl_{3}-benzene. The solution was stirred in a CO_{2} atmosphere for 14 hr . Only starting material was recovered.
Potassium Cyanide. Pt $\left[\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{O}\right]\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}(\mathrm{I})(0.476 \mathrm{~g}, 0.5$ mmol) was suspended in ethanol (50 ml), and KCN was added ($0.032 \mathrm{~g}, 0.5 \mathrm{mmol}$). The resulting suspension was stirred for 20 min at 60°. During this time a clear solution was obtained. To this solution $\left[\mathrm{NEt}_{4}\right] \mathrm{Br}$, dissolved in 40 ml of ethanol, was added. After reduction to small volume and addition of a few milliliters of water, an off-white solid was obtained in almost quantitative yield: ir spectrum (Nujol mull) $\nu_{\mathrm{CN}}=2180,2140 \mathrm{~cm}^{-1} ; 1: 1$ electrolyte in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Hydrogen Cyanide. HCN was bubbled through a solution of $0.43 \mathrm{~g}(0.5 \mathrm{mmol})$ of $\mathrm{Pt}^{2}\left[\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{O}\right]\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{3}\right)_{3}\right]_{2}(\mathrm{~V})$ in anhydrous THF for 10 min . The solution was stirred overnight in an HCN atmosphere and white crystals precipitated. By comparison with an authentic sample the crystals proved to be cis $-\mathrm{Pt}[\mathrm{CN}]_{2}\left[\mathrm{P}\left(\mathrm{C}_{6}-\right.\right.$
$\left.\mathrm{H}_{5}\right)_{3} 3_{2}$. The organic product was not identified. With the same procedure but using HCl cis- $\mathrm{PtCl}_{2}\left[\mathrm{P}_{\left.\left(\mathrm{C}_{6} \mathrm{H}_{3}\right)_{3}\right]_{2} \text { was obtained. }}\right.$
Exchange Reactions. $\operatorname{Pt}\left[\mathrm{C}_{2}(\mathrm{CN})_{i} \mathrm{O}\right]\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$ (I) (0.476 g , 0.5 mmol) was dissolved in a mixture of 40 ml of benzene and 20 ml of CHCl_{3}. $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{\mathbf{5}}\right)_{3}(0.6 \mathrm{~g})$ was added. The solution was stirred for 1 hr at 60°. The volume was reduced and ethyl ether was added. The resulting white solid was filtered, washed with ether and n-hexane, and dried in cacuo. The product was identical with $\mathrm{Pt}\left[\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{O}\right]\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$ obtained by the method described above, e.g., $\mathrm{Pt}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{4}+\mathrm{C}_{2}(\mathrm{CN})_{4} \mathrm{O}$. The same type of reaction was carried out with $\mathrm{P}\left[p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right]_{3}$, to yield $\mathrm{Pt}\left[\mathrm{C}_{2}(\mathrm{CN}), \mathrm{O}\right][\mathrm{P}(p$ $\left.\left.\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}\right]_{2}$.

Acknowledgments. We wish to acknowledge the Deutsche Akademische Austauschdienst [DAAD] for a NATO research fellowship for R. S. This work was supported in part by the U.S. National Science Foundation. M. G. thanks C. N. R. (Rome) for partial financial support.
Supplementary Material Available. A listing of structure factor amplitudes will appear following these pages in the microfilm edition of this volume of the journal. Photocopies of the supplementary material from this paper only or microfiche (105×148 $\mathrm{mm}, 24 \times$ reduction, negatives) containing all of the supplementary material for the papers in this issue may be obtained from the Journals Department, American Chemical Society, 1155 16th St., N.W., Washington, D. C. 20036. Remit check or money order for $\$ 6.00$ for photocopy or $\$ 2.00$ for microfiche, referring to code number JACS-74-6893.

Molecular Orbital Theory of the Electronic Structure of Organic Compounds. XXI. Rotational Potentials for Geminal Methyl Groups

D. Cremer, ${ }^{1 \mathrm{a}}$ J. S. Binkley, ${ }^{\text {1a }}$ J. A. Pople, ${ }^{* 1 a}$ and W. J. Hehre ${ }^{\text {1b }}$
Contribution from the Department of Chemistry, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213, and the Department of Chemistry, University of California at Irvine, Irvine, California 92650. Received May 16, 1974

Abstract

Ab initio molecular orbital theory using the $4-31 \mathrm{G}$ split valence basis is used to investigate the potentia surfaces for the double methyl rotors, propane, dimethylamine, dimethyl ether, dimethylcarbene (singlet), isobutene, acetone, dimethylborane, and isopropyl cation. Experimental results, where available, are reproduced fairly satisfactorily. Qualitatively, the changes of the rotational barriers going from a single rotor to the corresponding double rotor are well explained by an "aromatic" stabilization involving bonding between methyl groups if the central atom is a π donor (as in dimethyl ether) and a corresponding "antiaromatic" destabilization if the central atom is a π acceptor.

TThe threefold potential barriers for internal rotation of methyl groups have been studied experimentally and theoretically for a wide variety of organic molecules. ${ }^{2}$ In this paper, we shall be concerned with methyl rotation in molecules where two such groups are attached to a common center X so that there may be interaction between them. Among all possible posi-

[^8]tions for the two groups, three clearly defined conformations I-III are possible. For propane (X being CH_{2})

I

II

III
these may be described as double staggered, staggered eclipsed, and double eclipsed. Conformation I is characterized by one CH bond of each methyl being trans to the XC bond of the other methyl. In III the corresponding CH bonds are cis with regard to the XC bonds and II, finally, exhibits one cis and one trans

[^0]: (1) (a) Northwestern University; (b) Università Cà Foscari.
 (2) (a) P. G. Gassman and F. J. Williams, J. Amer. Chem. Soc., 94, 7733 (1972); P. G. Gassman and R. R. Reitz, J. Organometal. Chem., 52, C51 (1973); (b) R. Aumann, J. Organometal. Chem., 47, C29 (1973); 66, C6 (1974).
 (3) L. Cassar and J. Halpern, Chem. Commun., 1082 (1970).
 (4) L. A. Paquette, Accounts Chem. Res., 4, 280 (1971).
 (5) R. M. Moriarty, C.-L. Yeh, and K. C. Ramey, J. Amer. Chem. Soc., 93, 6709 (1971); R. M. Moriarty, K.-N. Chen, C.-L, Yeh, J. L, Flippen, and J. Karle, ibid., 94, 8944 (1972).
 (6) G. F. H. Tipper, J. Chem. Soc., 2045 (1955).
 (7) R. D. Gillard, M. Keeton, R. Mason, M. F. Pilbrow, and D. R. Russel, J. Organometal. Chem., 33, 247 (1971).
 (8) F. J. McQuillin and K. G. Powell, J. Chem. Soc., Dalton Trans., 2123 (1972).
 (9) M. Lenarda, R. Ros, M. Graziani, and U. Belluco, J. Organometal. Chem., 46, C29 (1972).
 (10) M. Lenarda, R. Ros, M. Graziani, and U. Belluco, J. Organometal. Chem., 65, 407 (1974).
 (11) J. A. McGinnety, J. Organometal. Chem., 59, 429 (1973).
 (12) D. J. Yarrow, J. A. Ibers, M. Lenarda, and M. Graziani, J. Organometal. Chem., 70, 133 (1974).

[^1]: (13) Y. Wang and G. D. Stucky, Acta Crystallogr., Sect. B, 29, 1255 (1973).
 (14) D. Matthews, J. Swanson, M. H. Mïller, and G. D. Stucky, J. Amer. Chem. Soc., 93, 5945 (1971).
 (15) G. Bombieri, E. Forsellini, C. Panattoni, R. Graziani, and G. Bandoli, J. Chem. Soc. A, 1313 (1970).

[^2]: (16) S. I. Chan, J. Zinn, J. Fernandez, and W. D. Gwinn, J. Chem. Phys., 33, 1643 (1960); S. I. Chan, J. Zinn, and W. D. Gwinn, ibid., 34, 1319 (1961).
 (17) S. F. Watkins, J. Chem. Soc. A, 168 (1970).
 (18) N. C. Stephenson, Acta Crystallogr., 17, 1517 (1964).
 (19) B. W. Davies, R. J. Puddephatt, and N. C. Payne, Can. J. Chem., 50, 2276(1972).
 (20) T. G. Appleton, H. C. Clark, and L. E. Manzer, Coord. Chem. Rev., 10, 335 (1973).
 (21) R. Mason, and G. B. Robertson, J. Chem. Soc. A, 485 (1969).
 (22) F. Cariati, R. Mason, G. B. Robertson, and R. Ugo, Chem. Commun., 408 (1967).
 (23) P,'T. Cheng, C. D. Cook, S. C. Nyburg, and K. Y. Wan, Can. J. Chem., 49, 3772 (1971).
 (24) A. McAdam, J. N. Francis, and J. A. Ibers, J. Organometal. Chem., 29, 149 (1971).
 (25) B. Kleve, Acta Chem. Scand., 25, 1975 (1971).
 (26) J. S. Ricci and J. A. Ibers, J, Amer. Chem. Soc., 93, 2391 (1971).

[^3]: (34) W. H. Baddley and W. D. Pitts, Jr,, Abstracts, 165th National Meeting of the American Chemical Society, Dallas, Tex., 1973, No. INOR 73 .
 (35) R. C. Mehrotra, Inorg. Chim. Acta Rev., 1, 99 (1967).

[^4]: (36) R. J. De Pasquale, J. Chem. Soc., Chem. Commun., 157 (1973).
 (37) G. D. Stucky, D. A. Matthews, J. Hedman, M. Klasson, and C. Nordling, J. Amer, Chem. Soc., 94, 8009 (1972).
 (38) W. J. Linn, O. W. Webster, and R. E. Benson, J. Amer. Chem. Soc., 87, 3651 (1965).
 (39) W. J. Linn and R. E. Benson, J. Amer. Chem. Soc., 87, 3657 (1965); W. J. Linn, ibid., 87, 3665 (1965).
 (40) R, Hoffmann, J. Amer. Chem. Soc., 90, 1475 (1968); E. F. Hayes and A. K. O. Siu, ibid., 93, 2090 (1971).
 (41) O. Bastiansen, F. N. Fritsch, and K. Hedberg, Acta Crystallogr., 17, 538 (1964).
 (42) R. Hoffmann and W. D. Stohrer, J. Amer. Chem. Soc., 93, 6941 (1971): H. Gunther, Tetrahedron Lett., 5173 (1970).

[^5]: (43) P. W, R. Corfield, R. J. Doedens, and J. A. Ibers, Inorg. Chem., 6, 197 (1967).
 (44) R. J. Doedens and J. A. Ibers, Inorg. Chem, 6, 204 (1967).
 (45) In addition to various local programs for the CDC 6400, local modifications of the following programs were employed: Dewar's fame program, Zalkin's fordap Fourier program, the agnost absorption program, Johnson's ORTEP 11 thermal ellipsoid plotting program, Busing and Levy's orffe error function program. Our least-squares program, NuCLS, in its nongroup form, closely resembles the Busing and Levy orfls program.
 (46) D. T. Cromer and J. T. Waber, "International Tables for X-Ray Crystallography," Vol. 4, Kynoch Press, Birmingham, England, Table 2.2 A , in press.

[^6]: (47) R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 42, 3175 (1965).
 (48) J. A. Ibers and W. C. Hamilton, Acta Crystallogr., 18, 17 (1965).
 (49) W. H. Zachariasen, Acta Crystallogr., Sect. A, 24, 213 (1968).

[^7]: (50) See paragraph at end of paper regarding supplementary material.
 (51) L. Malatesta and C. Cariello, J. Chem. Soc., 105 (1968).
 (52) R. Ugo, F. Cariati, and G. La Monica, Inorg. Syn., 11, 105 (1968).
 (53) C. A. Tolman, W. C. Seidel, and D. H. Gerlach, J. Amer. Chem. Soc., 94, 2669 (1972).

[^8]: (1) (a) Carnegie-Mellon University; (b) University of California at Irvine.
 (2) For reviews on internal rotation, see (a) J. P. Lowe, Progr. Phys. Org. Chem., 6, 1 (1968); (b) E. Wyn-Jones and R. A. Pethrick, Top. Stcreochem., 5, 205 (1970); (c) Symposium on Energetics of Conformational Changes, J. Mol. Struct., 6, 1 (1970): W. Gordy and R. L. Cook, "Microwave Molecular Spectra," Interscience, New York, N. Y., 1970: (d) see, for example, L. Radom and J. A. Pople, MTP (Med. Tech. Pıbl. Co.) Int. Rec. Sci: Phys. Chem., Ser. One, 71 (1972).

